

(An Autonomous Institution - AFFILIATED TO ANNA UNIVERSITY, CHENNAI)
S.P.G.Chidambara Nadar - C.Nagammal Campus
S.P.G.C.Nagar, K.Vellakulam - 625 701, (Near Virudhunagar), Madurai District.

B.E. COMPUTER SCIENCE AND ENGINEERING REGULATION 2020

FIRST YEAR (I & II Semester) - CURRICULUM & SYLLABI

SEMESTER I

S.NO	COURSE	COURSE TITLE	CATE		PERIODS PER WEEK		TOTAL CONTACT	CREDITS
	CODE		GORY	L	Т	Р	PERIODS	
THEO	RY		•					
1	HS1171	Communicative English	HS	3	0	0	3	3
2	MA1171	Engineering Mathematics-I	BS	3	1	0	4	4
3	PH1171	Engineering Physics	BS	3	0	0	3	3
4	CY1171	Engineering Chemistry	BS	3	0	0	3	3
5	GE1171	Fundamentals of Computing and Programming	ES	3	0	0	3	3
PRAC	PRACTICALS							
6	BS1181	Basic Sciences Laboratory	BS	0	0	2	2	1
7	Fundamentals of Computing		ES	0	0	4	4	2
		TOTAL	15	1	6	22	19	

SEMESTER II

S.NO.	COURSE CODE	COURSE TITLE	CATE GORY	PERI V L	ODS VEEK T		TOTAL CONTACT PERIODS	CREDITS
THEOF	THEORY							
1	HS1271	Technical English	HS	3	0	0	3	3
2	MA1271	Engineering Mathematics-II	BS	3	1	0	4	4
3	PH1273	Physics for Information Science	BS	3	0	0	3	3
4	BS1271	Environmental Science and Engineering	BS	3	0	0	3	3
5	GE1271	Engineering Graphics	ES	1	0	4	5	3
6	CS1201	Object Oriented Programming using Python	PC	3	0	0	3	3
PRAC1	TICALS							
7	GE1281	Engineering Practices Laboratory	ES	0	0	4	4	2
8	CS1211	Object Oriented Programming laboratory using Python	PC	0	0	4	4	2
			TOTAL	16	1	12	29	23

HS1171 COMMUNICATIVE ENGLISH (Common to all branches of B.E. / B.Tech Programmes)

L	T	Р	С
3	0	0	3

OBJECTIVES:

To enable the students to

- Develop the basic reading and writing skills of first year engineering and technology students
- Help learners develop their listening skills, which will enable them listen to lectures and comprehend them by asking questions; seeking clarifications
- Help learners develop their speaking skills and speak fluently in real contexts
- Help learners develop vocabulary of a general kind by developing their reading skills

UNIT I SHARING PERSONAL INFORMATION

9

Listening- short texts- Short formal and informal conversations about current affairs. **Speaking**-introducing oneself - exchanging personal information **Reading-** Reading- short comprehension passages and fill-in the gap, Practice in skimming, scanning and predicting content and end up effectively -**Writing-** Completing sentences using connectors - Developing hints based on the true facts -**Language development-** Parts of speech- Tenses-modal verbs Language Ladders: Wh-Questions/ Yes or no questions - **Vocabulary development** -Prefixes-suffixes- Changes in meaning.

UNIT II GENERAL READING AND FREE WRITING

9

Listening -telephonic conversations. **Speaking** - sharing information of personal kind - redundancies - taking leave- **Reading** - comprehension-pre-reading-post reading- comprehension questions (multiple choice questions and /or short questions/ open-ended questions)-inductive reading- short narratives and descriptions from newspapers including dialogues and conversations (also used as short Listening texts)- register- **Writing** - paragraph writing- topic sentence- main ideas- Free writing-Summary writing -**Language development** - prepositions, conjunctions, articles, count/uncount nouns- **Vocabulary development**-guessing meanings of words in context.

UNIT III GRAMMAR AND LANGUAGE DEVELOPMENT 9

Listening – listening to longer texts and filling up the table- product description- narratives from different sources. **Speaking**- asking about routine actions and expressing opinions **Reading**- short texts and longer passages (close reading) **Writing**– constructing a paragraph of their own choiceuse of reference words and discourse markers-coherence-jumbled sentences . **Language development**- degrees of comparison- pronouns- direct vs indirect questions- **Vocabulary development** – single word substitutes- meanings of root words.

UNIT IV READING AND LANGUAGE DEVELOPMENT

Listening- listening to dialogues or conversations and completing exercises based on them. **Speaking-** speaking about oneself- speaking about one's friend. **Reading-** comprehension reading longer texts- reading different types of texts- magazines Writing- letter writing, informal or personal letters-e-mails-conventions of personal email-**Language development-**Phrasal Verbs-**Vocabulary Development-** synonyms-antonyms.

UNIT V EXTENDED WRITING

9

Listening –listening to talks- conversations- **Speaking** – participating in conversations- short group conversations-**Reading**- longer texts- close reading –**Writing**- brainstorming -writing short essays – developing an outline- identifying main and subordinate ideas- dialogue writing- **Language development**- Collocations used in everyday life - **Vocabulary Development** - Fixed and Semi-Fixed Expressions used in informal situations

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

C01: Comprehend articles of a general kind in magazines and newspapers.

CO2: Apply acquired knowledge of conventions in diverse contexts by participating effectively in informal conversations

CO3: Make use of standard English to express views coherently and explicitly in formal communication.

CO4: Demonstrate proper grammar usage in the writing of personal letters and emails in English

CO5: Illustrate their ability to write short essays of a general kind

TEXTBOOKS:

- 1. Richards, C. Jack, 2015, *Interchange Students' Book-2*, CUP, New Delhi.
- 2. Sanjay Kumar & Pushp Lata, 2018, *Communication Skills*: Oxford University Press, Chennai.

REFERENCES:

- 1. Shoba, KN 2019, Communicative English A Workbook, Cambridge, New Delhi.
- 2. Bailey & Stephen 2011, *Academic Writing: A practical guide for students*. Rutledge, New York.
- 3. Comfort, Jeremy, <u>Pamela Rogerson Revell</u>, <u>Trish Stott</u> & <u>Derek Utley</u> 2011, *Speaking Effectively: Developing Speaking Skills for Business English.* Cambridge University Press, Cambridge.
- 4. Dutt P. Kiranmai & Rajeevan Geeta 2013, Basic Communication Skills, Foundation Books.
- 5. Means,L. Thomas & Elaine Langlois 2007, *English & Communication for Colleges*, Cengage Learning ,USA.
- 6. Redston, Chris & Gillies Cunningham 2005, Face2Face (Pre-intermediate Student's Book& Workbook), Cambridge University Press, New Delhi.

WEB SOURCES:

- 1. http://learnenglish.britishcouncil.org/grammar/intermediate-to-upper-intermediate
- 2. https://www.bbc.co.uk/learningenglish/basic-grammar

MA1171

ENGINEERING MATHEMATICS – I (Common to all branches of B.E. / B.Tech Programmes)

L	Т	Р	С
3	1	0	4

12

PREREQUISITE: Basics of Matrices – Limit of a function – Continuity – Differentiation – Integration – Elementary calculus. (Not for Examination)

OBJECTIVES:

To enable the students to

- Gain knowledge in using matrix theory techniques to solve problems.
- Understand the various techniques in differential calculus to obtain the maxima and minima of a function.
- Understand the concept of evolutes and envelopes.
- Understand the concept of integration for finding Length of curves, Volumes of solid of revolution, Surface areas of revolution.
- Acquaint the student with mathematical tools needed in evaluating multiple integrals and their applications.

UNIT I MATRICES

Characteristic equation – Eigen values and Eigen vectors – Properties – Cayley-Hamilton Theorem (without proof) – Applications: Inverse and powers of a matrix – Diagonalization of matrices – Reduction of a quadratic form to canonical form by orthogonal transformation – Nature of quadratic forms.

UNIT II APPLICATIONS OF DIFFERENTIAL CALCULUS 12

Curvature in Cartesian coordinates – Centre and radius of curvature – Circle of curvature – Evolutes – Envelopes – Increasing and Decreasing functions – Maxima and Minima of functions of single variable using first derivative test.

UNIT III APPLICATIONS OF INTEGRAL CALCULUS 12

Beta and Gamma Function– Properties– Evaluation of integrals using Beta and Gamma function– Length of curves – Surface areas of revolution.

UNIT IV PARTIAL DIFFERENTIATION AND ITS APPLICATIONS 12

Partial differentiation – Homogeneous functions and Euler's theorem – Total derivative – Partial differentiation of implicit functions – Jacobians – Taylor's series for functions of two variables – Maxima and minima of functions of two variables – Lagrange's method of undetermined multipliers.

UNIT V MULTIPLE INTEGRALS AND ITS APPLICATIONS 12

Double integrals – Change of order of integration – Double integrals in polar coordinates – Area enclosed by plane curves – Triple integrals – Volume of solids.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Apply the concept of Eigen values and eigenvectors, diagonalization of a matrix for solving Engineering problems.
- CO2: Apply differentiation to solve maxima and minima problems.
- CO3: Apply integration to compute Length of curves and Surface areas of revolution.
- CO4: Apply Partial differentiation to compute Maxima and minima of functions of two variables.
- CO5: Apply multiple integrals technique to calculate area and volume.

TEXT BOOKS:

- 1. Grewal, B S 2014, *Higher Engineering Mathematics*, Khanna Publishers, 43rd Edition, New Delhi
- 2. Kreyszig Erwin 2016, *Advanced Engineering Mathematics*, John Wiley and Sons, 10th Edition, New Delhi.

- 1. Anton, H, Bivens, I & Davis, S 2016, Calculus, Wiley, 10th ed.
- 2. Jain, RK, & Iyengar, SRK 2007, *Advanced Engineering Mathematics*, Naros Publications, 3rd Edition, New Delhi.
- 3. Narayanan, S & Manicavachagom Pillai, T K 2007, *Calculus Volume I and II*, S. Viswanathan Publishers Pvt. Ltd., Chennai.
- 4. Peter V.O'Neil 2007, Advanced Engineering Mathematics, Cengage learning 7th Edition.
- 5. Weir, MD, & Joel Hass 2016, *Thomas Calculus*, Pearson Education 12th ed, India.

PH1171

ENGINEERING PHYSICS (Common to all branches of B.E./ B.Tech Programmes)

L	T	Р	С
3	0	0	3

OBJECTIVES:

• To enhance the fundamental knowledge in Physics and its applications relevant to various streams of Engineering and Technology.

UNIT I ULTRASONICS

9

Generation of ultrasonic waves –Magnetostriction generator – Piezoelectric generator - detection of ultrasonic waves - properties – cavitation - velocity measurement – acoustic grating - Industrial applications: SONAR - Non Destructive Testing - A,B and C –scan displays.

UNIT II LASER AND FIBER OPTICS

9

Lasers: population of energy levels, Einstein's A and B coefficients— Semiconductor lasers: homo junction and heterojunction.

Fiber optics: principle, numerical aperture and acceptance angle - types of optical fibre (material, refractive index profile and number of modes) –sensors: pressure and displacement, optical fiber communication system, endoscope.

UNIT III THERMAL PHYSICS

9

Thermal conductivity – Forbe's and Lee's disc method- conduction through compound media (series and parallel) - thermal expansion of solids and liquids – thermal insulation- Applications: heat exchangers, refrigerators, ovens and solar water heater.

UNIT IV QUANTUM PHYSICS

9

Postulates of quantum mechanics - Black body radiation - Planck's theory (derivation) - wave particle duality - electron diffraction - degenerate and non-degenerate states -physical significance of wave function- Schrödinger's wave equation - time independent and time dependent wave equations - particle in a one-dimensional box - scanning tunneling microscope.

UNIT V CRYSTAL PHYSICS

9

Crystalline and non-crystalline solids - unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – interplanar distances - coordination number and packing factor for SC, BCC, FCC and HCP - crystal defects: point defect and line defect - role of imperfections in plastic deformation - Bridgman and Czochralski crystal growth techniques.

TOTAL: 45 Hours

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Understand the properties, generation and applications of ultrasonic waves.
- CO2: Realize the properties & principle of laser, and propagation of light in optical fibre.
- CO3: Explain the idea of heat conduction in different media and understand the real applications of heat transfer.
- CO4: Comprehend the quantum concepts in materials.
- CO5: Describe the various types of atomic arrangements and imperfections in crystal.

TEXT BOOKS:

- 1. Bhattacharya, DK, & Poonam, T 2015, Engineering Physics Oxford University Press.
- 2. John Wilson, Hawkes, JFB 1998, Optoelectronics: An Introduction, Prentice Hall of India.
- 3. Gaur, RK & Gupta, SL 2012, Engineering Physics, Dhanpat Rai Publishers.
- 4. Pandey, BK & Chaturvedi, S 2012, Engineering Physics, Cengage Learning India.
- 5. Charles Kittel 2007, Introduction to Solid State Physics, 7th ed, Wiley India.

REFERENCES:

- 1. Halliday, D, Resnick, R & Walker, J 2015, Principles of Physics, Wiley.
- 2. Serway, RA. & Jewett, JW 2010, *Physics for Scientists and Engineers*, Cengage Learning, 2010.
- 3. Tipler, PA & Mosca, G 2007, Physics for Scientists and Engineers, USA.
- 4. Mathews, PM & Venkatesan 2010, A Text book of Quantum Mechanics, Tata McGraw hill.
- 5. William T. Silfvast 2004, *Laser Fundamentals*, 2nd ed, Cambridge University press, New York.
- 6. Shankar, R 2014, *Fundamentals of Physics*, Yale University Press, New Haven and London.

WEB REFERENCES:

- 1. https://nptel.ac.in/courses/122/106/122106034/ (Quantum Physics)
- 2. https://nptel.ac.in/courses/115/105/115105099/ (Solid state Physics)
- 3. https://nptel.ac.in/courses/115/107/115107095/ (Fiber Optics)
- 4. https://nptel.ac.in/courses/113/106/113106070/ (Ultrasonic testing)

CY1171

ENGINEERING CHEMISTRY(Common to all branches of B.E./ B.Tech Programmes)

L	T	Р	С
3	0	0	3

OBJECTIVES:

To enable the students to understand

- Water quality parameters and water treatment techniques.
- Principles and applications of electrochemistry, its processes and storage devices.
- The various energy sources and their applications
- The basic concepts of polymers, their properties and some of the important applications.
- The basic principles and preparatory methods of engineering materials and nanomaterials.

UNIT I WATER AND ITS TREATMENT

9

Water – sources and impurities – water quality parameters: colour, odour, pH, hardness, alkalinity, TDS, COD and BOD. Boiler feed water – requirement – troubles (scale & sludge, caustic embrittlement, boiler corrosion and priming & foaming). Internal conditioning – phosphate, calgon and carbonate treatment. External conditioning – zeolite (permutit) and ion exchange demineralization. Municipal water treatment process – primary (screening, sedimentation and coagulation), secondary (activated sludge process and trickling filter process) and tertiary (ozonolysis, UV treatment, chlorination, reverse osmosis).

UNIT II ELECTROCHEMISTRY

g

Introduction –Electrochemical cells – Reversible and irreversible cells – Concentration Cells - EMF - Measurement of EMF - Electrode potential – Single Electrode Potential – Nernst Equation (Problems) – Reference electrodes – Calomel electrode – Glass electrode – EMF Series – Significance – Applications of EMF measurements: Potentiometric Titrations. Storage Devices: Batteries and Super capacitors - Types of batteries - alkaline, lead-acid, nickel-cadmium and lithium batteries - construction, working and commercial applications. Fuel Cells – H₂-O₂ fuel cell – Microbial Fuel Cells.

UNIT III ENERGY SOURCES

9

Conventional and Non Conventional Energy Sources – Conventional: Fossil Fuels - classification of fuels - coal - analysis of coal (proximate and ultimate) - carbonization - manufacture of metallurgical coke (Otto Hoffmann method) - petroleum - manufacture of synthetic petrol (Bergius process) - natural gas - compressed natural gas (CNG) - liquefied petroleum gases (LPG). Non Conventional: Solar energy — Solar Energy Conversion — Solar Cells, Wind Energy, Nuclear Energy — Nuclear fission and fusion — Nuclear chain reactions - Nuclear reactor — Nuclear Power Plant — Breeder Reactor.

UNIT IV POLYMERS

9

Introduction: Functionality - degree of polymerization- Classification of polymers- natural and synthetic, thermoplastic and thermosetting. Types and mechanism of polymerization: addition (free radical, cationic, anionic and coordination); condensation and copolymerization. Properties of polymers: Tg, tacticity, molecular weight-weight average, number average and polydispersity index. Techniques of polymerization: Bulk, emulsion, solution and suspension. Synthesis, Properties and uses of: PE, PVC, Nylon 66, Bakelite, Epoxy resins.

UNIT V ENGINEERING MATERIALS

9

Introduction - Portland cement- manufacture and properties - setting and hardening of cement, special cement- waterproof and white cement-properties and uses - Glass - manufacture, types, properties and uses.

Nanomaterials - Basics-distinction between molecules, nanomaterials and bulk materials; size-dependent properties – Synthesis of nanomaterials: sol-gel, solvothermal, laser ablation, chemical vapour deposition, Precipitation & electrochemical deposition – General Applications.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon successful completion of course the students will be able to

- CO1: Identify the purity of water samples as per industry requirements.
- CO2: Apply basic concepts of electrochemistry in energy storage devices
- CO3: Recognize different forms of energy resources to apply them for suitable applications in energy sectors
- CO4: Illustrate the structure and properties of polymeric molecules.
- CO5: Identify the properties of various materials used in engineering and technology applications

TEXT BOOKS:

- 1. Jain, PC & Monica Jain 2015, *Engineering Chemistry*, 16th ed, Dhanpat Rai Publishing Company (P) Ltd, New Delhi.
- 2. Sivasankar B 2010, *Engineering Chemistry*, Tata McGraw-Hill Publishing Company Ltd, New Delhi.
- 3. Dara, SS & Umare, SS 2015, *A text book of Engineering Chemistry*, 2nd ed, Chand & Company Ltd, New Delhi.

- 1. Schdeva, MV 2017, Basics of Nano Chemistry, Anmol Publications Pvt Ltd.
- 2. Sivasankar, B 2012, Instrumental Methods of Analysis, Oxford University Press.
- 3. Friedrich Emich 2017, Engineering Chemistry, Scientific International Ltd.
- 4. Gowariker, VR, Viswanathan, NV & Jayadev Sreedhar 2019, *Polymer Science*, 6th ed, New Age International Publishers.

GE1171 FUNDAMENTALS OF COMPUTING AND PROGRAMMING (Common to all branches of B.E./ B.Tech Programmes)

L T P C 3 0 0 3

OBJECTIVES:

To enable the students to:

- Provide the basics of computational problem solving
- Develop simple C Programs using basic programming constructs
- Develop simple C programs to work on arrays and strings
- Develop simple applications in C using functions and pointers
- · Develop basic applications in C using structure and files

UNIT I INTRODUCTION TO COMPUTING AND PROBLEM SOLVING 7

Fundamentals of Computing – Basic computer organization – Generation of Computers – Evolution of programming languages – Need for logical analysis and thinking – Number System – Algorithms – Pseudocodes – Flowcharts.

SUGGESTED TOOL: Raptor tool SUGGESTED ACTIVITIES:

Draw a flow chart and write a pseudocode to perform the following operations:

- i. Swap two numbers without temporary variable
- ii. Leap year or not
- iii. Sum of even numbers in range of 1 to N
- iv. Prime or not
- v. Find minimum in a given array of elements
- vi. Solve Towers of Hanoi problem

UNIT II BASICS OF C PROGRAMMING

11

Introduction to C programming – Structure of C program – Cprogramming: Data Types – Storage classes – Constants– Enumeration Constants – Keywords – Operators: Precedence and Associativity – Expressions – Input/Output statements, Assignment statements – Decision making statements – Switch statement – Looping statements.

SUGGESTED ACTIVITIES:

Write a C Program to perform the following operations:

- i. Simple calculator
- ii. GCD
- iii. Fibonacci series

UNIT III ARRAYS AND STRINGS

10

Introduction to Arrays: Declaration, Initialization – One dimensional array – Two dimensional arrays – String operations.

SUGGESTED ACTIVITIES:

Write a C Program to perform the following operations:

- i. Computing Mean, Median and Mode
- ii. Matrix operations (Addition, Scaling, Multiplication and Transpose)
- iii. Bubble Sort
- iv. Linear Search
- v. String operations (length, compare, concatenate, copy, reverse)

UNIT IV FUNCTIONS AND POINTERS

9

Introduction to functions: Function prototype, function definition, function call, Built-in functions – Recursion – Pointer – Pointer operators – Pointer arithmetic – Parameter passing: Pass by value, Pass by reference.

SUGGESTED ACTIVITIES:

Write a C Program to perform the following operations:

- i. String functions, math functions
- ii. Computation of Sine series
- iii. Scientific calculator using built-in functions
- iv. Factorial using recursive functions
- v. Swapping of two numbers using pass by value
- vi. Changing the value of a variable using pass by reference

UNIT V STRUCTURES AND FILE PROCESSING

8

Structure – Nested structures – Array of structures – Files– Types of file processing: Sequential access, Random access – Command line arguments – Pre-processor directives.

SUGGESTED ACTIVITIES:

Write a C Program to perform the following operations:

- i. Student mark sheet preparation using Structure
- ii. Read the content from a text file, convert it to upper case and store it in another text file
- iii. Search a content from the student data file (Sequential access)
- iv. Fetch nth record from the student data file (Random access)

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon successful completion of course the students will be able to

- CO1: Develop algorithms for simple computational problems
- CO2: Develop simple applications in C using basic constructs
- CO3: Design and implement applications using arrays and strings
- CO4: Develop and implement applications in C using functions and pointers
- CO5: Develop applications in C using structures and files

TEXTBOOKS:

- 1. ReemaThareja, 2016, *Programming in C*, 2nded, Oxford University Press.
- 2. Forouzan, BA&Gilberg, RF, 2006, *Computer Science: A structured programming approach using C*, 3rd ed, Cengage Learning.
- 3. Kernighan, B.W & Ritchie, D.M, 2006, *The C Programming language*, 2nd ed, Pearson Education.

- 1. Paul Deitel& Harvey Deitel, C How to Program, 7thed, Pearson Publication.
- 2. Juneja, BL & Anita Seth, 2011, Programming in C, CENGAGE Learning India pvt. Ltd.
- 3. Pradip Dey & Manas Ghosh, 2009, Fundamentals of Computing and Programming in C, Oxford University Press.
- 4. Anita Goe I& Ajay Mittal, 2011, Computer Fundamentals and Programming in C, DorlingKindersley (India) Pvt. Ltd., Pearson Education in South Asia.
- 5. Byron S. Gottfried, 1996, *Schaum's Outline of Theory and Problems of Programming with C*,McGraw-Hill Education.

BS1181

BASIC SCIENCES LABORATORY (Common to all branches of B.E / B.Tech Programmes)

L	T	Р	С
0	0	2	1

PHYSICS LABORATORY

OBJECTIVES:

To introduce different experiments to test basic understanding of physics concepts applied in optics, ultrasonics, thermal and semiconductor physics.

LIST OF EXPERIMENTS: PHYSICS LABORATORY (Any 5 Experiments)

- 1. (a) Determination of wavelength, and particle size using Laser.
 - (b) Determination of acceptance angle in an optical fiber.
- 2. Determination of thermal conductivity of a bad conductor Lee's Disc method.
- 3. Determination of velocity of sound and compressibility of liquid Ultrasonic Interferometer.
- 4. Determination of wavelength of mercury spectrum spectrometer grating.
- 5. Determination of band gap of a semiconductor.
- 6. Determination of thickness of a thin wire Air wedge method.
- 7. Determination of Young's modulus by Uniform bending method.

Experiments using LabVIEW: (Demonstration only)

- 1. Calibration of Ammeter/Voltmeter using potentiometer.
- 2. Sensors Displacement, Pressure, Strain and Acoustical sensors.

TOTAL: 15 PERIODS

CHEMISTRY LABORATORY

OBJECTIVES:

To enable the students to

- Inculcate experimental skills to test basic understanding of water quality parameters, such as, acidity, alkalinity, hardness, DO, chloride and copper.
- Familiarize with electroanalytical techniques such as, pH metry, potentiometry and conductometry in the determination of impurities in aqueous solutions.

LIST OF EXPERIMENTS: (Any 6 Experiments)

- 1. Estimation of HCl using Na₂CO₃ as primary standard and Determination of alkalinity in water sample.
- 2. Determination of total, temporary & permanent hardness of water by EDTA method.
- 3. Determination of DO content of water sample by Winkler's method.
- 4. Determination of chloride content of water sample by argentometric method.
- 5. Estimation of copper content of the given solution by EDTA method
- 6. Determination of strength of given hydrochloric acid using pH meter.
- 7. Determination of strength of acids in a mixture of acids using conductivity meter.
- 8. Estimation of iron content of the given solution using potentiometer.

TOTAL: 15 PERIODS

COURSE OUTCOMES:

Upon successful completion of course the students will be able to

- CO1: Interpret the elastic property of the materials using non-uniform bending method and the size of the microscopic particles with the help of a laser.
- CO2: Find the bandgap of the semiconductor using Four probe setup and compressibility of the given liquid and velocity of the ultrasonic waves using an ultrasonic interferometer.
- CO3: Illustrate the wavelength of different colours present in the polychromatic light source using grating
- CO4: Analyse the water quality parameters like hardness, Alkalinity, Chloride, DO in the given water sample by volumetric method
- CO5: Determine the quantity of the analyte in the given sample by volumetric method with the help of instruments

TEXT BOOKS:

1. Jeffery, GH, Bassett, J, Mendham, J & Denney, RC, 2014, "Vogel's Textbook of Quantitative Chemical Analysis", 8th ed.

GE1181 FUNDAMENTALS OF COMPUTING AND PROGRAMMING LABORATORY

L T P C 0 0 4 2

(Common to all branches of B.E / B.Tech Programmes)

OBJECTIVES:

To enable the students to

- Learn the use of office automation tools
- Represent the solution to simple problems using algorithm and flowchart.
- Develop simple programs in C using basic constructs.
- Develop simple programs to solve primitive applications in C using strings, pointers, functions, structures and files

LIST OF EXPERIMENTS:

1. OFFICE APPLICATION SOFTWARE

- a. Word Processing
 - I. Document creation, Text manipulation with Scientific notations
 - II. Table creation, Table formatting and Conversion
 - III. Letter preparation and mail merge
 - IV. Drawing flow Chart
- b. Spread Sheet
 - I. Formula formula editor, Sorting
 - II. Chart Line, XY, Bar and Pie
- c. Power point
 - I. Advertisement making
 - II. Presentation preparation

2. DRAW FLOWCHART USING RAPTOR TOOL TO:

- I. Find area of a circle
- II. Find the biggest of two numbers
- III. Compute grade for given mark
- IV. Find the sum and average of 'N' numbers

3. C PROGRAMS USING I/O STATEMENTS AND EXPRESSIONS TO:

- I. Find area and volume of shapes
- II. Convert centigrade to Fahrenheit
- III. Swap two numbers with and without using temporary variable

4. C PROGRAMS USING DECISION-MAKING CONSTRUCTS TO:

- I. Find the biggest of two numbers
- II. Compute grade for given mark
- III. Check whether the given number is Armstrong number or not

5. C PROGRAMS USING ONE DIMENSIONAL ARRAY TO:

- I. Perform linear search
- II. Sort the given numbers using bubble sort
- III. Populate an array with height of persons and find how many persons are above the average height.

6. C PROGRAMS USING TWO DIMENSIONAL ARRAY TO:

- I. Add two matrices
- II. Multiply two matrices
- III. Find sum of diagonal elements of a Matrix

7. C PROGRAMS USING FUNCTIONS TO:

- I. Design a calculator to perform the operations, namely, addition, subtraction, multiplication, division and square of a number.
- II. Find the factorial of a number using recursion
- III. Swap the value of two numbers (Call by value and Call by reference)
- IV. Sort the list of numbers using functions

8. C PROGRAMS USING STRINGS TO:

- I. Check whether the given string is palindrome or not (Without using built-in functions)
- II. From a given paragraph perform the following using built-in functions:
 - a) Find the total number of words.
 - b) Capitalize the first word of each sentence.
 - c) Replace a given word with another word.

9. C PROGRAMS USING STRUCTURES TO:

I. Compute internal marks of students for five different subjects using structures and files.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

Upon successful completion of course the students will be able to

- CO1: Understand the use of office automation tools
- CO2: Represent pictorially the solution for simple problems.
- CO3: Develop C programs for simple applications making use of basic constructs, arrays and strings.
- CO4: Develop C programs to solve simple applications using functions, recursion and pointers.
- CO5: Build C programs to solve simple applications using structure and files.

HS1271

TECHNICAL ENGLISH (Common to all Branches of B.E / B.Tech Programmes)

L	Т	Р	С
3	0	0	3

OBJECTIVES:

To enable the students to:

- Develop strategies and skills to enhance their ability to read and comprehend engineering and technology texts.
- Foster their ability to write convincing job applications and effective reports.
- Develop their speaking skills to make technical presentations, participate in group discussions.
- Strengthen their listening skill which will help them comprehend lectures and talks in their areas of specialization.

UNIT I TECHNICAL WRITING-AN INTRODUCTION

9

Listening- Listening to talks of scientists / Indian speakers – Fill- in exercises- **Speaking** Asking for and giving directions for ESL students- **Reading** – reading short technical texts from journals-newspapers - **Writing**- purpose statements – extended definitions - Writing instructions-checklists-recommendations-**Vocabulary Development**- technical vocabulary **Language Development** – subject verb agreement – compound words

UNIT II INTERPRETATION OF GRAPHICAL REPRESENTATION 9

Listening- Listening to longer technical talks and completing exercises based on them-**Speaking** – describing a graphical interpretation-Reading-Error Correction- Paragraph Completion- Graphical Representation- Writing- interpreting charts, graphs, paragraphing- Vocabulary Development-vocabulary used in formal letters/emails and reports. Language Development- personal passive voice, numerical adjectives.

UNIT III JOB APPLICATIONS

9

Listening- Listening to documentaries and making notes. **Speaking** – mechanics of presentations-**Reading** – reading for detailed comprehension- **Writing**- email etiquette- job application – cover letter –Resume preparation(via email and hard copy)- **Vocabulary Development**- Perfect phrases for interviews-. **Language Development**- clauses- if conditionals

UNIT IV REPORT WRITING

ę

Listening- TED/Ink talks; **Speaking** –participating in a group discussion -**Reading**– reading and understanding technical articles **Writing**– Writing reports- minutes of a meeting- accident and survey report-**Vocabulary Development**- prefixes and suffixes/Synonyms- Misspelled words. **Language Development**- embedded sentences.

UNIT V ESSAY WRITING

9

Listening- Listening to TED Talks that are technical in nature **-Speaking** – introduction to technical presentations- **Reading** – longer texts both general and technical, practice in speed reading;

Writing-analytical, descriptive and issue based essays- **Vocabulary Development**- verbal analogies **Language Development**- Commonly Used Idioms and Phrases.

TOTAL PERIODS: 45

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Utilize basic grammatical skills in writing instructions, checklists and recommendations
- CO2: Apply acquired knowledge of Grammar to prepare formal letters and e-mails.
- CO3: Develop reading skills by familiarizing with different types of reading strategies.
- CO4: Construct documents with respect to career
- CO5: Make use of communicative English in report preparation and minutes.

TEXT BOOKS:

- 1. Sam Praveen.D& K.N. Shoba, 2020, A Course in Technical English, CUP, Chennai.
- 2. Raman & Sharma, 2018, Technical Communication, OUP, New Delhi.

REFERENCES:

- 1. Richard Rossner, 2017 Language Teaching Competences, OUP.
- 2. Booth, L, Diana, 2014 Project Work, OUP, Oxford.
- 3. Shoba and Praveen Sam 2018, *Technical English-Workbook*, Cambridge University Press: New Delhi.
- 4. Ibbotson & Mark 2009, Professional English in use, University Press, New Delhi,
- 5. Sudharshana, NP & Shavitha, C 2018, *English for Engineers*, Cambridge University Press, Chennai.

WEB SOURCES:

- 1. https://owl.purdue.edu/owl/subject-specific-writing/professional-technical-writing/index.ht ml
- 2. https://hbr.org/topic/communication

MA1271

ENGINEERING MATHEMATICS – II (Common to all Branches of B.E / B.Tech Programmes)

L	T	Р	С
3	0	0	3

OBJECTIVES:

To enable the students to:

- Acquire sound knowledge of techniques in solving ordinary differential equations obtained from engineering problems.
- Acquaint the student with the concepts of vector calculus that is needed for problems in engineering disciplines.
- Know the standard techniques of complex variable theory to obtain solution of integrals.
- Know Laplace transforms for solving differential equations.

UNIT I DIFFERENTIAL EQUATIONS

12

Higher order linear differential equations with constant coefficients - Method of variation of parameters – Homogenous equation of Euler's and Legendre's type – System of simultaneous linear differential equations with constant coefficients.

UNIT II VECTOR CALCULUS

12

Gradient and directional derivative – Divergence and curl - Vector identities – Irrotational and Solenoidal vector fields – Line integral over a plane curve – Surface integral - Volume integral - Green's, Gauss divergence and Stoke's theorems – Verification and application in evaluating line, surface and volume integrals.

UNIT III ANALYTIC FUNCTIONS

12

Analytic functions – Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Properties – Harmonic conjugates – Construction of analytic function – Conformal mapping – Mapping by functions w = z+c, cz and 1/z - Bilinear transformation.

UNIT IV COMPLEX INTEGRATION

12

Line integral - Cauchy's integral theorem – Cauchy's integral formula – Taylor's and Laurent's series – Singularities – Residues – Residue theorem – Application of residue theorem for evaluation of real integrals.

UNIT V LAPLACE TRANSFORMS

12

Existence conditions – Transforms of elementary functions – Transform of unit step function and unit impulse function – Basic properties – Shifting theorems -Transforms of derivatives and integrals – Initial and final value theorems – Inverse transforms – Convolution theorem – Transform of periodic functions – Application to solution of linear second order ordinary differential equations with constant coefficients.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

At the end of the course, students will be able to

- CO1: Apply various techniques in solving differential equations which arises in Engineering problems.
- CO2: Solve engineering problems using the concept of vector calculus.
- CO3: Make use of the concept of analytic functions, conformal mapping and Bilinear transformations.

CO4: Evaluate integrals using Cauchy's integral formula and residue theorem.

CO5: Apply Laplace transforms techniques in solving differential equations.

TEXT BOOKS:

- 1. Grewal, BS 2014, *Higher Engineering Mathematics*, Khanna Publishers, 43rd Edition, New Delhi.
- 2. Kreyszig Erwin 2016, *Advanced Engineering Mathematics*, John Wiley and Sons, 10th Edition, New Delhi.

- 1. Bali, N, Goyal, M & Watkins, C 2009, *Advanced Engineering Mathematics*, Firewall Media, 7th ed, New Delhi.
- 2. Jain, RK & Iyengar, SRK 2007, *Advanced Engineering Mathematics*, Narosa Publications, 3rd ed, New Delhi.
- 3. Wylie, RC & Barrett, LC 2012, *Advanced Engineering Mathematics*, Tata McGraw Hill Education Pvt. Ltd, 6th ed, New Delhi.
- 4. Peter V. O'Neil 2007, Advanced Engineering Mathematics, Cengage learning, 7th ed.
- 5. Weir, MD & Joel Hass 2016, *Thomas Calculus*, Pearson Education, 12th ed, India.

PH1273

PHYSICS FOR INFORMATION SCIENCE (COMMON TO CSE, IT & AD)

L	T	Р	С
3	0	0	3

OBJECTIVES:

 To impart knowledge on the essential principles and properties of materials to CSE, IT & data science students.

UNIT I CONDUCTING & SUPERCONDUCTING MATERIALS

Conducting Material: Free electron theory of metals (Classical & Quantum) - Wiedemann-Franz law derivation - Fermi-Dirac distribution function – Density of energy states – carrier concentration in metals - Low resistivity and high resistivity materials – thermostat and thermal relays.

Superconducting Material: Occurrence of superconductivity - properties of superconductors - BCS theory - Type I and Type II superconductors - Applications of superconductors: CT scan & MRI scan, Magnetic levitation and SQUID.

UNIT II SEMICONDUCTING MATERIALS

9

9

Direct and indirect bandgap semiconductors- Carrier generation and Recombination- Drift current - Diffusion current- Continuity equations- Einstein relation— Carrier concentration in intrinsic semiconductors — Carrier concentration in extrinsic semiconductors: N-type & P-type — Hall effect and their applications.

UNIT III MAGNETIC PROPERTIES OF MATERIALS

9

Types of magnetic materials (diamagnetism – Paramagnetism – ferromagnetism – antiferromagnetism & ferrimagnetism) – Neel's temperature - Ferromagnetism: Domain Theory of ferromagnetism - Hysteresis behavior – Hard and soft magnetic materials – Giant Magneto Resistance sensor – Application in magnetic hard disk.

UNIT IV OPTICAL PROPERTIES OF MATERIALS

a

Classification of optical materials – colour centres - Absorption emission and scattering of light in metals, insulators and semiconductors (concepts only) - photo current in a P-N diode – solar cell – LED – Organic LED – Laser diodes - Optical data storage techniques.

UNIT V SENSORS AND TRANSDUCERS

ç

Specifications of sensors and transducers – classification of sensors – potentiometer sensors – strain gauges - Capacitive element-based sensor -Linear variable differential transformer -Eddy current proximity sensors - Inductive proximity switch - Optical encoders - Bimetallic strips - Light sensors.

TOTAL: 45 PERIODS

COURSE OUTCOMES

Upon successful completion of course the students will be able to

- CO1: Explain the conducting and superconducting properties of materials and its applications.
- CO2: Describe the basics of semiconductor and its applications in various devices.
- CO3: Classify the different types of magnetic materials and they can describe the magnetic principle in computer data storage.
- CO4: Describe the functioning of optical materials and its applications.
- CO5: Compare the uses of different type of sensors and transducers.

TEXTBOOKS:

- 1. Kasap, SO 2017, Principles of Electronic Materials and Devices, McGraw-Hill Education.
- 2. Kittel, C 2019, Kittel's Introduction to Solid State Physics, 8th edition, Wiley India.
- 3. Patranabis, D 2005, Sensors and Transducers, Prentice Hall of India.

REFERENCES:

- 1. Supriyo Datta 1997, *Electronic Transport in Mesoscopic Systems*, Cambridge University press.
- 2. Sze, SM 2008, *Physics of Semiconductor Devices*, 3rdedition, Wiley.
- 3. Garcia, N & Damask, A 2012, Physics for Computer Science Students. Springer-Verlag.

WEB REFERENCES:

- 1. https://nptel.ac.in/courses/113/105/113105025/ (Conducting Materials)
- 2. https://nptel.ac.in/courses/115/101/115101012/ (Superconducting Materials)
- 3. https://nptel.ac.in/content/storage2/courses/112108150/pdf/Web_Pages/WEBP_M16.pdf (Magnetic properties of materials)
- 4. https://nptel.ac.in/content/storage2/courses/112103174/pdf/mod2.pdf (Sensors & Transducers)

BS1271

ENVIRONMENTAL SCIENCE AND ENGINEERING (Common to all Branches of B.E / B.Tech Programmes)

L	T	Р	С
3	0	0	3

OBJECTIVES:

To enable the students to understand

- The interrelationship between living organism and environment.
- The integrated themes and biodiversity, natural resources, pollution control and waste management.
- Scientific, technological, economic and political solutions to environmental problems.
- The dynamic processes and understand the features of the earth's interior and surface
- The importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value

UNIT I INTRODUCTION TO ENVIRONMENTAL STUDIES, ECOSYSTEM AND BIODIVERSITY 12

Definition, scope and importance, need for public awareness - Environment- Concept of ecosystem – structure and function of an ecosystem – producers, consumers and decomposers- Energy flow in the eco system - Food chain, Food web -Ecological pyramid- Ecological Succession - Introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries - Introduction to biodiversity definition: genetic, species and ecosystem diversity - Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and optional values - India as a mega diversity nation – Hotspots of Biodiversity - endangered and endemic species of India- Threats to Biodiversity (habitat loss, poaching, man-wildlife conflicts) -conservation of biodiversity: In-situ and ex-situ – Field study.

UNIT II ENVIRONMENTAL POLLUTION

9

Definition – causes, effects and control measures of: (a) Air pollution (climate change, global warming, acid rain, ozone layer depletion) (b) Water pollution (c) Noise pollution (d) Marine pollution (e) Nuclear Pollution (f) Soil Pollution - Solid waste management- causes, effects and control – e-waste - Role of an individual in prevention of pollution - Pollution case studies

UNIT III NATURAL RESOURCES

9

Forest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and overutilization of surface and ground water, dams-benefits and problems – Rain water harvesting - Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources. Energy Conversion processes – Biogas – production and uses, anaerobic digestion - Land resources: Land as a resource, land degradation, man induced landslides, soil - role of an individual in conservation of natural resources.

UNIT IV DISASTER MANAGEMENT AND ENVIRONMENTAL LEGISLATIONS 9

Definition of disaster – types – Natural disasters – Earthquakes – Landslides – Flood, cyclones, Tsunami and Drought Man made disaster – Nuclear, Chemical and Biological disaster (COVID-19) – Disaster impacts (Environmental, Physical, social, ecological and economical) – Case study – Need and concept of disaster management – Disaster management cycle – Mitigation , relief – recovery –Role and responsibility of the government, community, local institutions and NGO's – Environmental ethics – Acts for prevention of environmental pollution – Wild life protection act – Forest conservation act –Water (Prevention & control) Act – Air (Prevention & control) Act – Environmental protection Act – Public awareness.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

6

Population growth, variation among nations – population explosion – family welfare programme – Resettlement and rehabilitation of people – human rights – value education - HIV / AIDS- women and child welfare - Environmental impact analysis (EIA)- -GIS-remote sensing- role of information technology in environment and human health – Case studies

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon successful completion of course the students will be able to

- CO1: Explain the natural environment and its relationships with human activities.
- CO2: Summarize the causes, effects and control measures of various environmental pollution.
- CO3: Illustrate the importance of various resources, its utilization and conservation
- CO4: Infer that the technological development and improvement in standard of living lead to serious environmental disasters.
- CO5: Outline the importance of population control and its impact on the environment.

TEXT BOOKS:

- 1. Bharucha, E, 2013, *Textbook of Environmental studies for Undergraduate Courses*, 2nd ed, Universities Press Pvt. Ltd.
- 2. Benny Joseph, 2017, *Environmental Science and Engineering*, 3rd ed, Tata McGraw-Hill, New Delhi.
- 3. Miller, TG & Jr, Spoolman, S, 2014, *New Environmental Science*, 14th ed, Wadsworth Publishing Co, New Delhi.

- 1. Kaushik, A & Kaushik, CP 2018, *Environmental Science and Engineering*, 6th ed, New Age International private Ltd, New Delhi.
- 2. Gilbert Masters & Wendell, P Ela, 2013, *Introduction to Environmental Engineering and Science*, 3rd ed, Pearson Education private Ltd.
- 3. De, AK 2014, *Environmental Chemistry*, 7th ed, New Age international publishers, New Delhi.
- 4. Sawyer, CN, Mac Carty, PL, & Parkin, GF 2003, *Chemistry for Environmental Engineering and Science*, 5th ed, Tata McGraw Hill, New Delhi.

GE1271

ENGINEERING GRAPHICS (Common to all Branches of B.E / B.Tech Programmes)

L	T	Р	С
1	0	4	3

OBJECTIVES:

To enable the students to

- Develop in students, graphic skills for communication of concepts, ideas and design of engineering products.
- Expose them to existing national standards related to technical drawings.

CONCEPTS AND CONVENTIONS (Not for Examination)

Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and dimensioning, Isometric projection of combination of solids

UNIT I PROJECTION OF POINTS, LINES AND PLANE SURFACE (3+12)

Orthographic projection- principles-Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes – Determination of true lengths and true inclinations by rotating line method and traces Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object

UNIT II PROJECTIONS OF SOLIDS

(3+12)

Projection of simple solids like prisms, pyramids, cylinder, cone when the axis is inclined to one of the principal planes by rotating object method.

UNIT III PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OFSURFACES (3+12)

Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other – obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids – Prisms, pyramids cylinders and cones.

UNIT IV ISOMETRIC AND PERSPECTIVE PROJECTIONS (3+12)

Principles of isometric projection – isometric scale -isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones - Perspective projection of simple solids-Prisms, pyramids and cylinders by visual ray method.

UNIT V ORTHOGRAPHIC PROJECTION

(3+12)

Curves used in engineering practices: Conics – Construction of ellipse, parabola and hyperbola by eccentricity method – Construction of cycloid — Drawing of tangents and normal to the above curves. Visualization concepts and Free Hand sketching: Visualization principles –Representation of Three Dimensional objects – Layout of views- Freehand sketching of multiple views from pictorial views of objects simple objects. Curves used in engineering practices: Conics – Construction of ellipse, parabola and hyperbola by eccentricity method – Construction of cycloid – Drawing of tangents and normal to the above curves

TOTAL: 75 PERIODS

COURSE OUTCOMES:

Upon successful completion of course the students will be able to

CO1: Familiarize with the fundamentals and standards of Engineering graphics

CO2: Perform freehand sketching of basic geometrical constructions and multiple views of objects.

- CO3: Project orthographic projections of lines and plane surfaces
- CO4: Draw projections and solids and development of surfaces
- CO5: Visualize and to project isometric and perspective sections of simple solids.

TEXT BOOKS:

- 1. Natarajan, KV 2006, *A text book of Engineering Graphics*, Dhanalakshmi Publishers, Chennai.
- 2. Venugopal K & Prabhu Raja V 2008, *Engineering Graphics*, New Age International (P) Limited.

- 1. Bhatt ND & Panchal VM 2010, *Engineering Drawing*, 50th ed, Charotar Publishing House.
- 2. Basant Agarwal & Agarwal CM 2008, *Engineering Drawing*, Tata McGraw Hill Publishing Company Limited, NewDelhi.
- 3. Gopalakrishna KR 2007, *Engineering Drawing (Vol. I&II combined)*, Subhas Stores, Bangalore.
- 4. Luzzader, Warren.J. & Duff, John M 2005, Fundamentals of Engineering Drawing with an introduction to Interactive Computer Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi.
- 5. N S Parthasarathy & Vela Murali 2015, *Engineering Graphics*, Oxford University, Press, New Delhi.
- 6. Shah MB & Rana BC 2009, Engineering Drawing, 2nd ed Pearson.

CS1201 OBJECT ORIENTED PROGRAMMING USING PYTHON

L	Т	Р	С
3	0	0	3

OBJECTIVES:

To enable the students to

- Understand the fundamentals of Python programming and develop simple python program using control statements.
- Use Python data structures strings, lists, tuples, and dictionaries.
- Learn object-oriented concepts and develop simple object oriented application using class and objects.
- Understand the concepts of inheritance and polymorphism for code reusability and extensibility.
- Write robust code using exception handling.

UNIT I PYTHON FUNDAMENTALS

9

Introduction to Python: History and Future of Python, Working with Python – interactive and script mode, Identifiers and Keywords, Comments, Indentation, Data types – built-in data types, Operators and Expressions, Console Input/Output, Formatted printing - Selection/Conditional Branching Statements: if, if-else, nested if, if-elif-else statement(s), Basic Loop Structures/ Iterative Statements: while and for loop, Nested loops, break and continue statement, pass statement, else statement used with loops.

UNIT II STRING, LIST, TUPLE AND DICTIONARY

9

Strings: Indexing, Traversing, Concatenating, Appending, Multiplying, Formatting, Slicing, Comparing, Iterating – Basic Built-in String Functions – List: Adding items to a List – Finding and Updating an item – Nested Lists – Cloning Lists – List Slices – Mutability - Tuples: Creation, Accessing, Updating, Deleting Elements in a Tuple, Tuple as return Value, Dictionaries - Dictionary: Creating, Accessing, Adding items, Modifying, Deleting, Sorting.

UNIT III FUNCTION, CLASS AND OBJECT

9

Functions: Defining a function, calling a function, returning values from a function, formal and actual arguments, positional arguments, recursive functions. Introduction to Object Oriented Concepts: Features of Object oriented programming system (OOPS) - Classes and Objects, Encapsulation, Abstraction, Inheritance, Polymorphism - Classes and Objects: Creating a class, Creating objects, Methods and Self argument, Data Abstraction and Hiding through Classes - Constructor, Types of Constructor – Namespaces - Built-in Class Attributes.

UNIT IV INHERITANCE AND POLYMORPHISM

9

Inheritance: Super class, Sub class, Access modifiers, Types of inheritance - Constructors in inheritance, super() method - Polymorphism - function overloading, operator overloading - Magic methods - Abstract classes - Interfaces.

UNIT V EXCEPTION HANDLING AND FILE HANDLING

9

Exception: Errors in a Python program, exceptions, exception handling, types of exceptions, except block, the assert statement - Files: Introduction, Opening and Closing files, Reading and Writing files, File positions - Modules and Packages.

TOTAL: 45 PERIODS

OUTCOMES:

Upon successful completion of this course, students will be able to:

- CO1: Develop simple python programs using control statements.
- CO2: Utilize the concepts of strings, list, tuples and dictionary in solving simple real world problems.
- CO3: Identify the solution to simple object oriented programs using class and objects.
- CO4: Apply inheritance and polymorphism concepts to solve simple real world problems.
- CO5: Illustrate the use of exception handling and file handling in python programming.

TEXT BOOKS:

- 1. Reema Thareja, 2017, *Python Programming: Using Problem Solving Approach*, Oxford University Press.
- 2. Dusty Philips, 2015, Python 3 Object Oriented Programming, 2nd ed, PACKT Publishing.

- 1. Allen B Downey, 2016, Think Python: How to Think Like a Computer Scientist, 2nd ed, Shroff/O'Reilly Publishers.
- 2. Nageswara Rao, R, 2017, Core Python Programming, Dreamtech press.
- 3. Michael H Goldwasser, David Letscher, 2007, Object Oriented Programming in Python, 1st ed, Prentice Hall.
- 4. Guido van Rossum & Fred L Drake Jr, 2011, An Introduction to Python Revised and Updated for Python 3.2, Network Theory Ltd.,
- 5. Charles Dierbach, 2016, Introduction to Computer Science using Python, Wiley India Edition.

GE1281

ENGINEERING PRACTICES LABORATORY (Common to all branches of B.E. / B.Tech Programmes)

L	Т	Р	С
0	0	4	2

OBJECTIVES:

• To provide exposure to the students with hands on experience on various basic engineering practices in Civil, Mechanical, Electrical and Electronics Engineering.

GROUP A (CIVIL &MECHANICAL)

I CIVIL ENGINEERING PRACTICE 12

Buildings:

(a) Study of plumbing and carpentry components of residential and industrial buildings. Safety aspects.

Plumbing Works:

- (a) Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.
- (b) Study of pipe connections requirements for pumps and turbines.
- (c) Preparation of plumbing line sketches for water supply and sewage works.
- (d) Hands-on-exercise:

 Basic pipe connections Mixed pipe material connection Pipe connections with different joining components.
- (e) Demonstration of plumbing requirements of high-rise buildings.

Carpentry using Power Tools only:

- (a) Study of the joints in roofs, doors, windows and furniture.
- (b) Hands-on-exercise:
 - i. Wood work, joints by sawing, planning and cutting

II MECHANICAL ENGINEERING PRACTICE 18

Welding:

(a) Preparation of butt joints, lap joints and T- joints by Shielded metal arc welding.

Basic Machining:

- (a) Simple Turning and Taper turning
- (b) Drilling Practice

Sheet Metal Work:

- (a) Forming & Bending:
- (b) Model making Trays and funnels.

Machine assembly practice:

- (a) Study of centrifugal pump
- (b) Study of air conditioner
- (c) Study of 3D Printing

Group –B (Electrical &Electronics)

III ELECTRICAL ENGINEERING PRACTICE 14

- 1. Residential wiring using switches, fuse, indicator, lamp and energy meter.
- 2. Fluorescent lamp wiring.
- 3. Stair case wiring
- 4. Measurement of energy using single phase energy meter.
- 5. Measurement of electrical quantities voltage, current, impedance, power & power factor in RLC circuit.
- 6. Measurement of resistance to earth of electrical equipment.
- 7. Study of UPS
- 8. Study of Protective Devices- Fuses, Circuit Breakers & Relays

IV ELECTRONICS ENGINEERING PRACTICE 16

- 1. Study of Electronic components and equipments, Resistor color coding, measurement of ACsignal parameters (peak-peak, rms period, frequency) using CRO.
- 2. Study of logic gates AND, OR, EX-OR and NOT.
- 3. Generation of Clock Signal.
- 4. Soldering practice Components Devices and Circuits Using general purpose PCB.
- 5. Measurement of ripple factor of HWR and FWR.
- 6. Study of Mixed Storage Oscilloscope

TOTAL: 60 PERIODS

COURSE OUTCOMES:

Upon successful completion of course the students will be able to

- CO1: Fabricate carpentry components and pipe connections including plumbing works.
- CO2: Use welding equipment to join the structures
- CO3: Make the models using sheet metal works
- CO4: Demonstrate various electrical switches and wiring.
- CO5: Measure the various electrical quantities.
- CO6: Elaborate on the components, gates, soldering practices

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

CIVIL

 Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings. Carpentry vice (fitted to work bench) Standard woodworking tools Models of industrial trusses, door joints, furniture joints Power Tools: (a) Rotary Hammer Demolition Hammer Circular Saw Planer Hand Drilling Machine Jigsaw 	15 Sets. 15 Nos. 15 Sets. 5 each 2 Nos 2 Nos 2 Nos 2 Nos 2 Nos 2 Nos 2 Nos 2 Nos
MECHANICAL	
Arc welding transformer with cables and holders	5 Nos.
2. Welding booth with exhaust facility	5 Nos.
3. Welding accessories like welding shield, chipping hammer,	
wire brush, etc.	5 Sets.
Oxygen and acetylene gas cylinders, blow pipe and other wolding outfit	2 Nos.
welding outfit.	Z NOS.
5. Centre lathe	2 Nos.
6. Hearth furnace, anvil and smithy tools	2 Sets.
7. Moulding table, foundry tools	2 Sets.
8. Power Tool: Angle Grinder	2 Nos
9. Study-purpose items: centrifugal pump, air-conditioner,3D Printer One	eacn
ELECTRICAL	
 Assorted electrical components for house wiring 	15 Sets
Electrical measuring instruments	10 Sets
3. Study purpose items: Iron box, fan and regulator, emergency lamp	1 each
4. Megger (250V/500V)	1 No.
5. Power Tools: (a) Range Finder	2 Nos
(b) Digital Live-wire detector	2 Nos
ELECTRONICS	
1. Soldering guns	10 Nos.
2. Assorted electronic components for making circuits	50 Nos.
3. Small PCBs	10 Nos.
4. Multimeters	10 Nos.
5. Study purpose items: Telephone, FM radio, low-voltage power supply	

CS1211 OBJECT ORIENTED PROGRAMMING LABORATORY USING PYTHON

L	Т	Р	С
0	0	4	2

OBJECTIVES:

To enable the students to

- Understand core python programming basics for solving simple mathematical and scientific problem.
- Use appropriate data structure from string, list, tuple and dictionary to process the compound data in python programming.
- Learn the concepts of class and object and develop classes for simple applications.
- Implement inheritance and polymorphism for reusability and extensibility.
- Demonstrate the implementation of exception handling and file handling in python.

LIST OF EXPERIMENTS

1. BASICS OF PYTHON

Write Python programs for the following:

- a) Purposefully raise Indentation Error and correct it.
- b) Compute distance between two points taking input from the user (Hint: use Pythagorean theorem)
- c) To take three numbers and print its sum and average.
- d) To find the area of circle
- e) To find volume

2. CONTROL FLOW

Write Python programs for implementing the following:

- a) Checking whether the given number is even number or not.
- b) Finding the factorial of a number.
- c) Print the prime numbers below 100.

3. STRINGS

Write Python programs for implementing the following:

- a) Read an email id and display the no of vowels, consonants, digits and symbols in it.
- b) Check whether given string is palindrome or not.
- c) Read a line of text and remove the first word from given text.

4. LIST

- a) Read a list of numbers and remove duplicate numbers from it.
- b) Read a list of numbers and print the sum of odd integers and even integers from the list.(Ex: [23, 10, 15, 14, 63], odd numbers sum = 101, even numbers sum = 24)
- c) Multiplication of two matrices.

5. TUPLE AND DICTONARY

- a) Write a program to create and display a dictionary by storing the antonyms of words. Find the antonym of a particular word given by the user from the dictionary using while loop.
- b) Given a tuple and a list as input, write a program to count the occurrences of all items of the list in the tuple. (Input: tuple = ('a', 'a', 'c', 'b', 'd'), list = ['a', 'b'], Output: 3)

6. CLASS AND OBJECTS

- a) Create a class named "Point" with "xcod" and "ycod" as data members. Include member functions to read and print the coordinate as "getPoint()" and "showPoint()" respectively. Write a python program to demonstrate the "Point" class.
- b) Create a class named "Circle" with "radius" as data member and two methods which will compute the area and the perimeter of a circle.

7. CONSTRUCTORS

- a) Create a class "student" with "name, age, degree and branch" as data members. Include a constructor to set the member values and a member function "printStudent()" to print the member values respectively. Write a python program to demonstrate the Student class.
- b) Define a "student" class with "roll number, name and marks" in 3 tests of subjects. Use appropriate functions to find the average of two best marks for a student and print the roll number, name and average marks of a student. First, initialize the data members using constructors.

8. INHERITANCE

- a) Write a python program to perform the banking operations using class. Create a "bank" class that contains the following members and member functions. Data members are to store a bank customer's balance and account number. Add member functions to get and display the value of customer's balance and account number. Derive a class "bankOperation" from "bank" for the following operations: 1. deposit money into the account and 2. withdraw money from the account.
- b) Create a class "interest" which consists of the following data members and member functions. Data members: principle amount, number of years, and rate of interest. Member function: Get data and Put data. Using inheritance, create class "simpleInterest" and "compoundInterest" to compute the interest. Write a python program to calculate the simple interest or compound interest according to the user choice.

9. POLYMORPHISM

a) Write a python program to develop suitable hierarchy classes for Point, Shape, Rectangle, and Circle. Design a simple test application to demonstrate polymorphism.

10. OVERRIDING MAGIC METHODS

a) Write Python program to implement overriding magic methods.

11. EXCEPTION HANDLING

- a) Write a python program to demonstrate built-in exception.
- b) Create a class "Time" to display a time value with the data members of hours, minutes and seconds. Include the member functions to get and display the time separated by: as HH:MM:SS. Assume that the time is represented in 12 hours. If the input value exceeds the hour, minute and second then your function should report the exception as invalid hour/minute/second. Write a python program to model the above.

12. FILE HANDLING

- a) Create a new file "Hello.txt" and copy the contents of it to other file called "target.txt" where the target file should store only lower case alphabets of the source file.
- b) Write a Python program to store N student's records containing name, roll number and branch. Given a branch, write a function to print the given branch student's details only.

TOTAL: 60 PERIODS

OUTCOMES:

On the successful completion of the course, students will be able to

- CO1: Develop simple Python programs using I/O statements and control statements.
- CO2: Make use of string, list, tuple and dictionary to handle compound data in python programming.
- CO3: Solve simple object oriented programs using class, object and constructor.
- CO4: Build the solution for real world problems using Inheritance and polymorphism.
- CO5: Use exception handling and file handling in python for solving simple real world applications.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

S. No.	Description of Equipment	Quantity Required
1	Personal Computers (Intel Core i3, 250 GB, 4 GB RAM)	30
2	Printer	1
3	Software: Python 3.0 or above	30 users